
JOURNAL OF COMPUTATIONAL PHYSICS 52, l-23 (1983)

Review Article

Self-Sorting Mixed4adix Fast Fourier Transforms’

CLWE TEMPERTON *

European Centre for Medium Range Weather Forecasts,
Shinfield Park, Reading, Berks, RG2 9AX, United Kingdom, and

Meteorological Oflce, London Road, Bracknell, Berkshire, United Kingdom

Received October 26, 1982

Some examples are given of the uses of the FFT algorithm in numerical weather prediction.
The algorithm is derived by means of matrix factorization, in such a way that the many
possible variants can be obtained in a unified manner. Particular attention is paid to self-
sorting variants of the algorithm, but skeleton Fortran routines are included for all the
“canonical” forms. The FFT works by decomposing the discrete Fourier transform into a
sequence of short transforms. Algorithms for these short transforms are presented and used to
derive operation counts for the whole algorithm. The implementation of the FFT on vector
computers is described, and in the final section it is demonstrated how savings can be
achieved in the case of two-dimensional transforms.

1. INTRODUCTION

Much of the progress made in computational physics during the past fifteen years
would not have been possible without the Fast Fourier Transform (FFT) algorithm.
The examples quoted here are taken from the field of numerical weather prediction,
but readers working in other areas will be able to supply similar examples.

At the European Centre for Medium Range Weather Forecasts (ECMWF), a
IO-day numerical weather forcast is run each day using a three-dimensional finite-
difference model of the global atmosphere with 15 levels in the vertical and a regular
96 x 192 latitude-longitude grid in the horizontal. The computational task of
integrating such a large model is made feasible only by using special methods to
lengthen the maximum stable timestep. This is achieved in two ways, in both of
which the FFT plays an important role.

First, the maximum stable timestep is proportional to the physical distance
between gridpoints; the convergence of the meridians implies that the gridpoints
become very close together in the zonal direction as the grid approaches the poles.
One remedy, now almost conventional in NWP models based on a regular

’ ‘PJ Controller, Her Majesty’s Stationery Office, London, 1983.
* Present address: Recherche en Prevision Numerique. West Isle Office Tower, 2121 Trans.Canada

Highway, Dorval, Quebec H9P 153, Canada.

1
0021-9991183 $3.00

2 CLIVE TEMPERTON

latitude-longitude grid, is to filter out the small-scale Fourier components of the
mode1 variables (or their time-tendencies) near the poles, thus increasing the effective
zonal separation of the gridpoints without sacrificing the regularity of the grid
[14, 281. This filtering is most efficiently achieved by Fourier transforming the fields.
setting the high-wavenumber coefftcients to zero, and then transforming back to
physical space. An alternative technique, currently implemented in the ECMWF grid-
point model, is to include implicit latitude-dependent zonal diffusion terms. This
technique too is most efficiently implemented via the FFT.

Second, the maximum timestep is inversely proportional to the frequency of the
most rapidly oscillating solutions of the model equations. These are the inertia-
gravity waves which have only small amplitudes in the real atmosphere and are of
little significance for NWP. By treating certain linear terms in the model using a
Crank-Nicholson time-integration procedure rather than the usual explicit centred
(leapfrog) scheme, the troublesome small-scale high-frequency gravity waves can be
artificially slowed down. The resulting semi-implicit time integration algorithm] 19]
remains stable with a timestep typically 6 times longer than would be possible with
an explicit scheme, while yielding practically identical results. Implementation of the
semi-implicit algorithm in a multi-level mode1 requires the solution at each timestep
of a three-dimensional discrete elliptic equation. Diagonalizing the vertical part of the
finite-difference operator decouples this equation into a set of two-dimensional
Helmholtz equations, which are solved by combining a fast direct solver in spherical
geometry [23] with the technique described in [4] for large out-of-core problems.
Most of the work in the fast two-dimensional elliptic solver consists of Fourier
transforms between gridpoint and wavenumber space.

With the model resolution currently employed, a IO-day forecast requires approx-
imately 15 million real Fourier transforms, each of length N = 192.

Even greater use of the FFT is made by the spectral model developed as a possible
alternative to the gridpoint model. Here the horizontal fields are represented not by
values at an array of gridpoints but by coefficients of spherical harmonic basis
functions. Spectral models are free of the pole problem, and the semi-implicit
algorithm is easily implemented since spherical harmonics are eigenfunctions of the
Helmholtz operator. However, the model’s nonlinear terms are most efficiently
computed by first transforming to physical space, evaluating the terms on a suitable
grid, and then transforming back to spectral space [3, 171. The zonal part of the two-
dimensional transforms between gridpoint and spectral space again consists of
Fourier transforms. At the current quasi-operational resolution of the ECMWF
spectral model, a lo-day forecast requires about 24 million real Fourier transforms of
length N = 192.

In addition to its many applications in computational physics and related fields
such as signal processing, Bre FFT has found a number of uses in computational
complex analysis, as recently reviewed by Henrici [131.

While the general principle of how the FFT works is reasonably straightforward
and quite well known, the precise details of the algorithm (or family of algorithms,
for there are many variants) are somewhat involved, and thanks to the widespread

SELF-SORTING MIXED-RADIX FFT 3

availability of “black box” routines many users have been able to avoid coming to
terms with them. This is unfortunate for several reasons. First, the black boxes are
not always as efficient or as general as they might be, and myths persist in some
quarters that, for example, the algorithm is only efficient if N is a power of 2, or that
a permutation of the data is necessary either before or after the transform. Second,
scientists faced with transferring their calculations to new computer architectures
need to understand the algorithm in order to exploit the transfer to the full. A third,
less utilitarian, reason is simply that the FFT is a very interesting algorithm.

Many papers have been written explaining the details of the algorithm, and the
only excuse for adding to the total is that the author believes the approach presented
here is more general and flexible than most. Also, routines based on the ideas
discussed here (particularly as implemented on the vector machines Cray-I and
Cyber 205) have attracted some interest in the numerical weather prediction
community, and these ideas may have wider application.

This paper will consider the Fast Fourier Transform of purely complex data; the
specialization to the real case will be left for a later publication. The FFT will be of
the conventional type in which no restrictions are placed on the factors of N, so we
will not treat the special case of mutually prime factors due to Good [121 and
developed more recently by Winograd [29]. Attention will be focussed in particular
on “self-sorting” variants of the algorithm which do not require any scrambling or
unscrambling of the data before or after the transform.

2. DEVELOPMENT OF THE ALGORITHM

(a) General Remarks

There are basically two approaches to the problem of explaining the FFT
algorithm. The first takes the defining equation

.v- L
xj = K’ zk exp(2ijkn/N),

.CO

O(j<N-1. (1)

and proceeds rather directly by manipulation of the indices j and k. Examples of this
approach are the papers by Cooley and Tukey [6], Gentleman and Sande 191, and
the book by Brigham [2]. If N is the product of two factors, this approach allows a
rather simple explanation of what is going on. However, the extension to many
factors requires a forest of summation signs and multiple subscripts which obscures
the details and hides the many alternatives which are available.

The alternative is to write Eq. (1) in matrix form,
x= W&Z, (2)

and to demonstrate that the matrix W,v can be factorized as a product of sparse
matrices [8, 10, 15, 18, 261. We refer to W, as the DFT (Discrete Fourier
Transform) matrix of order N. This approach has a more abstract flavour, and can
become somewhat unwieldy. However, it is possible to develop a compact notation

4 CLIVETEMPERTON

which enables us to treat many different variants of the FFT algorithm in a unified
manner. Strang [22, p. 303) has made the nice observation that “certain special
matrices will fall apart when they are dropped the right way.” We shall see that. in
the case of the DFT matrix, the pieces can be reassembled in many different ways.

In the development which follows, element (j, k) of a matrix A will be denoted by
[A] (j, k), with the convention that the rows and columns of an N x N matrix are
indexed from 0 to N - 1. For example, from Eqs. (1) and (2) we have

[W,h,](j, k) = ujk, (3)

where o = exp(2in/N). Our aim will be to show that if

then
N=n,n,...n,-,n,

W,v= TkTk-, ... TzT, (4)

and to determine explicitly the form of the factors Ti.

(b) The Two-Factor Case

Let N =pq. Then for any 0 <j Q N - 1, we can write j = lp + m, where
O<l<q-1, O<m<p-1. Similarly for any O<k<N-1, we can write
k=rq+s, where O<r<p- 1, O<s<q- 1.

Let I, be the identity matrix of order r. Then for 0 < p < r - 1, 0 < q < r - 1,

]I,l(P, 9) = a,,, (5)

where 6 is the Kronecker delta.
Following Bellman [11, define a Kronecker matrix product by A x B = (aijB). In

the present notation, let A and B be square matrices, of order p and q, respectively.
Then

[A x B](tq + u, rq + s) = [A](t, r) . [B](u, s).

Define a permutation matrix Pt of order pq by

[Pf,l(j, k) = 1 if j=rP+s and k=sq+r,

=o otherwise.

(6)

Finally, define a diagonal matrix D: of order pq by

[D;](j, k) = dm if j=k=sq+m,

= 0 otherwise,

where o = exp(2in/pq).
We can now establish the following matrix factorization theorem:

wpc, = (Wq X 1,) P;D;(W,, x I,). (7)

SELF-SORTING MIXED-RADIX FFT 5

Proof: From Eqs. (3), (5) and (6),

[wp x I&q + 24, rq + s) = umsu.

(Here o4 = exp(2ix/p).)

(8)

Premultiplication by a diagonal matrix multplies the rows, so from Eq. (8) and the
definition of 0: we have

[D;(W, x I,)](tq + u, t-q + s) = w’“w~~~S~,,.

Premultiplication by the permutation matrix Pf: takes row (tq + u) to row (up + t),
hence

[P:D:(W, x Z,)](up + I, rq + s) = d’w~*~B~~. (9)

Now, we also have, from Eqs. (3), (5) and (6),

[w, x Z,](rp + m, up + t) = W’Wmr . (10)

By the usual rules of matrix multiplication, Eqs. (9) and (10) give

W, x 1,) p::D;(W, x 4Jl(lp + m v + s)
p-1 q-1

cc -s
,Yo ,ecl

W’p”W’“Wq’t8mr is,, .

The presence of the factors a,, and 6,, ensures that there is only one non-zero
contribution to this sum, namely,

since mpq = 1,

Thus element (j, k) = (lp + m, rq + s) of the product matrix is mik, i.e., it is equal to
element (j, k) of Wpq, and the theorem is proved.

In keeping with Eq. (4), we write Eq. (7) in the form

W,, = T, T, .

The generalization to more factors depends on how this is done. For the time being,
we write

T, = P;D;(W, x I,),

T, = W, x I,),

and note that since Py = 07 = Z,, we could write

T, = (P:D’: x I,)< W, x Zp).

6 CLIVE TEMPERTON

This arrangement leads to a version of the algorithm known as “decimation in
frequency” [111.

(c) Extension to More Factors

The extension to multiple factors is now simply a matter of matrix algebra. For
example, if N = ~qr, we have, from Eq. (7),

and using Eq. (7) again to expand Wqr,

Writing this in the form

we have
Wpqr = T, Tz T,

T, = P&D3 W, x Iqr)r
T, = CD: x I,)(W, x I,,.),
T, = (W, x J,J,

and we could write

T, = (CD; x &,W’r x Ipq).

The pattern is now beginning to emerge. Suppose N = n, nz ..e A~. Define I, = 1,
li+,=nili for l<i<k, and mi=N/li+,. Then the general form is given by Eq. (4),
with

Ti = (P~iD~i X I[,)(Wni X I,v/ni)* (l-2)

Equation (12) may be proved formally by induction. Each stage of the transform
algorithm, corresponding to a factor n of N, consists of a set of transforms of order n,
then a multiplication by a diagonal matrix, and finally a permutation of the results.

The above development may be mathematically convincing, but it does not convey
immediately what the corresponding computer program would look like; most of us
think more easily in Fortran. The virtue of the matrix formalism is that, having
developed one form of the FFT algorithm, many other variants can easily be
deduced.

A skeleton Fortran program to implement Eqs. (4) and (12) will now be presented.
Suppose that the factors of N have been stored in an array IFAX(1) to IFAX-
(NFAX), and that a complex array of trigonometric function values has been defined
by

TRIGS (K + 1) = exp(2iKrr/N), O<K<N-1.

SELF-SORTING MIXED-RADIX FFT 7

Suppose that the data to be transformed are in an array A, and that a work array
C is provided. Each array acts alternately as input and output for successive stages of
the algorithm. The outer structure of the FFT routine is then:

C DECIMATION IN FREQUENCY
COMPLEX A(N), C(N), TRIGS(N)
INTEGER IFAX (NFAX)
LA = 1
DO 10 I = 1, NFAX
IFAC = IFAX(1)
CALL PASS (A, C, TRIGS, IFAC, LA, N)

C [now reverse roles of A and C]
LA = LA * IFAC

10 CONTINUE
STOP
END

The subroutine PASS has the following structure:

C SELF-SORTING, DECIMATION IN FREQUENCY
SUBROUTINE PASS(A, C, TRIGS, IFAC, LA, N)
COMPLEX A(N), C(N), TRIGS(N)
M = NIIFAC

C Define IFAC base addresses in A
IA=0,IB=M,ZC=2*M,ID=3*M ,...

C Define IFAC base addresses in C
JA=0,JB=LA,JC=2*LA,JD=3*LA ,...

C . . .
I= 1

J=l
JUMP = (IFAC - 1) * LA
DO20K=0,M-LA,LA
DO 10L= l,LA
C(J) = R(K) * (W(IFAC) * A(I))
I=lf 1
J=J+ 1

10 CONTINUE
J=JfJUMP

20 CONTINUE
RETURN
END

8 CLIVE TEMPERTON

In the inner loop, W(IFAC) is the DFT matrix of order IFAC. R(K) is a diagonal
matrix defined by

Q(K) = diag(TRIGS(l), TRIGS(K + l), TRIGS(2 * K + 1)....).

A(Z) and C(J) are vectors of length IFAC defined by A(Z) and C(J) are vectors of length IFAC defined by

A(Z) = A(Z) =

In practice the inner loop would of course be written out as a sequence of scalar
operations, preferably in real arithmetic, using various tricks to simplify the
multiplication by W(IFAC) (see Section 3), and taking account of the fact that the
first element of Q(K) is always 1. For example, if ZFAC = 2 the inner loop (in
complex arithmetic) becomes simply:

DO 10Z. = 1,LA
C(JA+J)=A(ZA+Z)+A(ZB+Z)
C(JB + J) = TRIGS(K + I) * (A(ZA + I) - A(ZB + I))
z=z+ 1
J=J+ 1

10 CONTINUE

In many circumstances it is worth providing a special case for K = 0, since Q(0) is
just the identity matrix.

Notice that the final results of the transform emerge in their natural order; the
required internal permutations are implemented simply by the indexing scheme
presented above. This is the essence of the “self-sorting” FFT, which distinguishes it
from other variants in which a separate data permutation is required either before or
after the transform. The only penalty is that two arrays are needed, since in general
the computations cannot be performed in place.

(d) Alternative Self-Sorting Algorithm

Let us return to Eq. (7), and split the two-factor case in a different way,

T, = (W,, x I,),

T2 = (W, x Z,) P;D;,

and notice that we could have written

T, = (Wp x Z,)(P;D; x Z,).

SELF-SORTING MIXED-RADIX FFT 9

This rearrangement gives rise to the form of the algorithm known as “decimation in
time.” From Eq. (7) we have

w*qr = wum* = (w, x z,,, P;qD;q(w,, x I,)

and using Eq. (7) again to expand Wps,

wpq* = (Wr x zpq> wxYwq x zpr)(pp; x ZJW, x Zqr),

which we can write as the product of three factors:

(13)

T, = < W, x ZJ(P;D; x I,),

T, = (W, x Zpq) Pf’” 0;“.

Again a pattern emerges, but this time the pattern is somewhat different. As before let
N = n1n2 --. nk, I,= 1, fi+,=niZi for l<i<k, and mi=N/Zi+,. Then the general
form is given by Eq. (4) with

Ti = (Wni X Z~,,i)(P~iD~i X Zmi)* (14)

Again, Eq. (14) can be proved formally by induction. Notice also that Eq. (13) for
three factors may be derived from Eq. (11) by a different route. Since Wpqr is
symmetric we can transpose the factorization of Eq. (11); using the identities
(AB)T = BTAF, (A X B)T = AT X BF, (Pt)’ = Pi, and the fact that the W, Z and D
matrices are themselves symmetric, and finally interchanging p and r, gives Eq. (13).
In fact the same process can be applied to the general case, Eq. (12), to give Eq. (14).

This version of the algorithm gives rise to a program similar to that already
presented, except that the variable LA now decreases on successive passes, the
indexing of the input and output arrays within the subroutine PASS is interchanged,
and the multiplication by R(K) is done before the multiplication by W(IFAC). For
completeness we give the corresponding routine below:

c DECIMATION IN TIME
COMPLEX A(N), C(N), TRIGS(N)
INTEGER IFAX(NFAX)
LA=N
DO 10Z= 1, NFAX
IFAC = IFAX
LA = LAIIFAC
CALL PASS(A, C, TRIGS, IFAC, LA, N)

c [now reverse roles of A and C]
18 CONTINUE

STOP
END

10 CLIVE TEMPERTON

Subroutine PASS is the same as before, except that the inner loop is replaced by

C(I) = W(IFAC) * (Q(K) * A(J)).

In this self-sorting variant of the FFT, the intermediate results can be characterized
in a manner which is reminiscent of the way the algorithm is often derived in the field
of signal processing [111. For example, in the three-factor case N =~qt-. the first
stage consists of DFT’s of length p on qr interleaved “samples” of the data; in the
second stage we combine these into DFT’s of length pq on r samples of the data, and
in the final stage these are combined into a single DFT of length pqr. (Hence the
name “decimation in time.“)

There is no such simple interpretation of the intermediate results for the first self-
sorting variant (decimation in frequency). However, we can make a “dual” obser-
vation, namely, that the last stage is equivalent to pq interleaved transforms of length
r; the second and third stages together are equivalent to p interleaved transforms of
length qr; and of course the three stages together constitute one transform of length
pqr. This observation is important for the vectorization techniques discussed in
Section 4.

(e) Other Forms

We now develop a form of the FFT algorithm in which all the permutations are
delayed until the end. We show that if

r
N=n,n, .a- nk-,nk

then

W,=P,P,-.. Pk-,PkTkTk-,... T,T,. (15)

First note the following useful lemma. If A,, B, are any square matrices of order p
and q, respectively, then

Pg4, x B4) = (B4 x A&J P;.

Using Eq. (16), Eq. (7) can be rewritten as

W,, = Pz(ip x W,) D;(W, x ZJ.

We can now write

W,, = P, P, T2 T,

(16)

(17)

with
T, = D”,<W, x I,),

T, = (1, x D:)(Z, X W,,,

P, = PC,

P, = I, x PY(= I,,).

SELF-SORTING MIXED-RADIX FFT 11

For N = pqr, we have

W p(qr) = fwp x YJ D&W, x 47,)

and using Eq. (17) again to expand W,, ,

Wpqr = P&VP x WVpq x YW, x WV, x Wq x 1,) D&W, x Zqrh

which can be written as

Wpqr = PIP?, T,T, T,
with

T, = D&(Wp x Zqrh

T, = (1, x DP)V, x Wq x I,),

T, = Vpq x D:)Vpq x WA

p, = P&Y

p,=z,xp;,

P, = zpq x P;(= IN).

As before, define 1, = 1, ii, , = nili for 1 < i Q k, and m, = N/Zi+ , . Then the general
case is given by Eq. (15) with

Ti = (Zli X Dzi>(Z,i X Wni X I,!),

pi = (zji X Pzi)*
(18)

This form corresponds to the Gentleman-Sande [9] version of the FFT algorithm,
and is another form of decimation in frequency. The multiplications by Ti can be
done in place, and in fact so can the permutations Pi, though the logic may then
become rather complicated; see Singleton [20] for details. This form of the FFT has
the advantage (rarely important on modern computers) that only a single array is
required, but at the cost of having to perform an explicit unscrambling of the data at
the end of the algorithm.

For a Fortran implementation we use the same routine as for self-sorting
decimation in frequency, but within the subroutine PASS the inner loop is replaced
by

C(J) = R(K) * (W(IFAC) * A(J)).

The index Z and the corresponding base addresses are no longer required, and the
array C can occupy the same locations as the array A.

The Cooley-Tukey [6] version of decimation in time is obtained by performing the
permutations before the remainder of the algorithm. Again using Eq. (17) and the fact
that PiDi= DZPZ, Eq. (7) becomes

Wpq = (Wq x Zp) D;(Z, x W,) Pt.

12 CLIVE TEMPERTON

The generalization to three factors is analogous to the Gentleman-Sande case, but

using Wpqr = WIPqjr. Skipping the details, we obtain (for k factors)

W,v= T,T,_, ... T,T,P,P?... P,m,P, (19)

with

Ti = (Z,i X W~i X Z,i)(Z,i X 0;:‘).

pi = (Imi X pf;i).

As in the case of the two self-sorting algorithms, the Cooley-Tukey version can be
obtained simply by transposing the Gentleman-Sande factorization. The appropriate
Fortran routine is now that for decimation in time, but the inner loop of subroutine
PASS becomes

C(J) = W(IFAC) *(R(K) * A(J)).

Yet another distinct form of the algorithm using decimation in frequency is that
due to Pease [181, which can be derived from the Gentleman-Sande form. In order to
do so we need another useful identity,

pp4pqr = p4
r P Pr’

and a corollary of Eq. (16),

CAP x Bq) = P;(Bq x AP) PZ.

(20)

(21)

Consider the factors Ti of the Gentleman-Sande algorithm, given by Eq. (18).
Using Eq. (21) we can rewrite each of them as

Ti = PTi”i(o$i X zli)(W,, X Ilip,) Piini*

At the left-hand end of the sequence Tk T,-, . . - T, T, we now get

P;“k”k = P& A 1

while at the right-hand end we get

Within the sequence we get pairs of permutation matrices of the form

p4t1 pV%

mi+lnitl Ii ’

Since li+ , = Z,n, and mi+ ,n,+, = m,, we can write this as

plbr,p;rini = p”, - p”,

! I limi - N:ni

using Eq. (20).

SELF-SORTING MIXED-RADIX FFT 13

We now have a new factorization which is still of the form (15), but with

‘i = P?m,(DZi X IJ(W,,i x ZNlni).

The advantage of this form (especially for the case n, = 2 for all i, with which Pease
was primarily concerned) is that the structure remains the same for each pass; only
the diagonal matrix (D2i x Iii) changes from one pass to the next. This form is
therefore rather suitable for hardware implementations, although an explicit
permutation of the data is still required to complete the transform (in fact the same
permutation as in the Gentleman-Sande algorithm). Incidentally, readers who refer to
Pease’s paper [181 should note that his definition of the Kronecker product is
different from that used here.

The appropriate Fortran routine is that for self-sorting decimation in frequency,
except that subroutine PASS is always called with LA = 1; the nested loop structure
then collapses to a single loop with K as the control variable. The two statements
incrementing J can then be combined to give J = J + IFAC. However, the indexing of
the TRIGS array is now correct only for the first pass. There are two ways of
retrieving the situation. We can provide a different TRIGS array for each pass; this is
expensive in storage, but to anticipate the results of Section 4 it may be the best
solution on a vector computer. Alternatively we can retain a nested loop structure in
order to index correctly a single TRIGS array.

As in previous cases there is an analogous form of decimation in time, obtained
either directly by transposition or by manipulation of the Cooley-Tukey version
along the same lines as above. The outcome is a factorization of the form given by
Eq. (19) but with

This form was recommended by Singleton [2 I] for transforming sequences of data
too large to be contained in core. The appropriate Fortran routine is now that for
self-sorting decimation in time with LA = 1, and with modifications similar to those
given for the previous algorithm. Note that Pease’s algorithm and its transpose, like
the self-sorting variants, require a work array.

We now have six different “canonical” forms of the FFT algorithm, with the
structure of the factorization defined in each case. For multiple factors there is now
almost no limit to the number of different algorithms which could be invented. For
example, if N = pqrs we could use any of the six forms to decompose the transforms
into factors containing Wp, and W,,, and then use any of the six forms to decompose
each of these factors further.

(f) Remarks

(1) It could be argued that there are really only two canonical forms,
decimation in frequency and decimation in time; within each of these categories, the
intermediate results for any of the three forms are the same apart from a permutation.

14 CLIVE TEMPERTON

(2) All forms require exactly the same amount of floating-point arithmetic.

(3) In the original paper by Cooley and Tukey [6] and many subsequent
descriptions, the vector A(Z) in the skeleton Fortran routine for decimation in
frequency is multiplied by the product matrix L)(K) * W(IFAC), i.e., we could
compute

(a(K) * W(IFAC)) * A(I)

rather than

O(K) * (W(IFAC) * A(Z)),

and similarly in the routine for decimation in time.
Assuming that the elements of the product matrix are already available (they could

be picked out of the TRIGS array), it appears at first sight that this would decrease
the operation count. We shall see in the next section why this is not in fact the case.
The elements of R(K) are variously referred to as phase factors, rotation factors (20 1
or twiddle factors [9 1.

(4) Although neglected for a long time, the self-sorting variants were
discovered soon after the Cooley-Tukey version; Cochran et al. [5] attribute the idea
to Stockham. In a sense it is obvious that such variants should exist; the problem is
to find simple algorithms for them. Gentleman and Sande [9] refer to the idea as
“FFT’s using scratch storage.” Uhrich [27] presented a compact self-sorting radix-2
program, but with no explanation of how it worked. Glassman [101 and Drubin [8]
also developed a self-sorting algorithm via matrix factorization. For a recent
derivation using a somewhat different approach. see De Boor [7 1.

(5) The self-sorting variants have recently attracted more attention in the
context of implementation on vector computers, since the explicit permutation
required by the other variants is essentially a scalar operation and thus relatively
time-consuming.

(6) There is one situation in which the extra storage requirements of the self-
sorting forms and the permutation step of other variants can both be avoided.
Suppose, for example, that the computation consists of a transform from physical
space to Fourier space, an operation on the Fourier coefftcients, and a transform
back to physical space. For the first transform we can use decimation in frequency,
but omitting the permutation. The operation on the Fourier coefftcients can then be
carried out, using the coefficients in scrambled order. For the final transform we use
decimation in time, omitting the permutation step and using the factors of N in
reverse order. This procedure depends on the fact that the permutation sequences of
Eqs. (15) and (19) are then inverses of each other. The penalty now of course is the
need to operate on the scrambled Fourier coefficients; whether this is acceptable will
depend on the application. There is also a need for routines to implement decimation
in both frequency and time.

SELF-SORTING MIXED-RADIX FFT 15

(7) Everything in this paper carries through with minor modifications for the
inverse transform,

N-l

or

Nz, = x xj exp(-2ijkrr/N)
j=O

Nz = W,$x.

Some writers define the forward and inverse transforms the other way round.

3. OPERATION COUNTS

Two aspects of the mixed-radix FFT algorithm for composite N contribute to its
speed. The first was demonstrated in the previous section; the transform can be
factorized into a sequence of operations based on transforms of length n,, where ni
are the factors of N. The second, less often mentioned, is the speed with which these
short transforms can themselves be computed. For small n, x = W,z can be obtained
using many fewer operations than appears necessary at first sight. (This is of course
the reason for separating out the multiplications by phase factors in the algorithms of
Section 2.)

In this section we give the algorithms for computing x = W,,z for 2 < n < 6. as
used in the Cray-1 and Cyber 205 FFT packages mentioned in the Introduction. Note
that for n = 3, 5, 6 they are different from the algorithms given by Winograd [29].
They are slightly more robust with respect to rounding errors, and the algorithm
given here for n = 5 requires fewer additions (but more multiplications) than
Winograd’s. The algorithms are all expressed in terms of complex numbers, but it will
be seen that all multiplications are by real numbers or by i.

For n = 2 we have simply

xo=Lo+Z,; x,=zo-z,

requiring 4 real additions.
For n = 3 we form three intermediate results,

t,=z, +z,; I t, = zo - $, ; t, = sin 60 * (z, - zZ);

x, = z,-J + t, ; x, = t, + it, ; x2 = t2 - it,,

requiring 12 real additions, 4 real multiplications,
For n = 4,

t, = Lo + z2 ; t,=z, +z,;

x0 = t, + t,; x, = t3 + it,;

requiring 16 real additions.

t, = z. - z2; t,=z, -z3;

x2 = t, - t2 ; x3 = t, - it,,

Singleton [201 gives an algorithm for arbitrary odd n which requires (n - 1)(n + 3)

581/52/l-2

16 CLIVE TEMPERTON

real additions and (n - 1)’ real multiplications. For n = 5 this would give 32 real
additions and 16 real multiplications. However, in the same paper a modification due
to Rader is given for n = 5 which saves 4 multiplications. (Winograd’s algorithm
saves a further two multiplications at the expense of 2 extra additions.)

r,=z, +z,; I, = 22 + z3 : t,=z,-zr,; t,=z,-z,; t,=t,+t,;

t, = (\/5/4)(t, - t,); t,=z,--tt,; t, = t, + t,; tg = t, - t, ;

t,, = sin 72 * t, + sin 36 * t,; I,, = sin 36 * t, - sin 72 * t, ;

x0 = zo + t, ; x, = t* + it,,; x* = t, + it,, ; x3 = t, - it,, ; XJ = I, - it,,,

requiring 32 real additions and 12 real multiplications. A useful variation, which
reduces all operations to triadic form, is

t, = sin 72 * (z, - zl); t, = sin 72 * (z2 - z3);

tlo = t, + (sin 36/sin 72) * t,; t,, = (sin 36/sin 72) * t, - t,

with no change in the operation count.
The inclusion of n = 6 in an FFT package is unconventional, but as will be shown

later it leads to a significant decrease in the overall operation count. The algorithm is
the smallest example of Good’s theorem [121 that, by suitable permutations of the
input and output data, the phase factors in the factorization of W,, can be eliminated
if p and q are mutually prime (here p = 2, q = 3).

We can rewrite x = W,z as

X0

X4

x2

--- =

x3

XI

- X?-

31 w3

s i
zo

W 22 Z4
F

---i---- w, I-w, z3 L5 ZI
Thus we can use the algorithm for n = 3 on the vectors (zo,zZ, zJ) and (z3, z5, z,),
and then take sums and differences; or we can take the sums and differences first, and
then apply the algorithm for n = 3 to the results. In either case, the operation count is
36 real additions and 8 real multiplications. Including the n = 6 algorithm within a
conventional FFT enables some advantage to be taken of mutually prime factors,
without going to the complexity of Good’s algorithm.

Table I summarizes the operation counts for these fast “small transform”
algorithms, and compares them with the corresponding basic algorithms using direct
matrix multiplication (but avoiding redundant multiplications by f 1 and ki).

To emphasize the point about separating out the multiplication by phase factors,
consider the computation x = R W,z where R is a diagonal matrix of complex
numbers, the first of which is 1. Applying the algorithm above for n = 6 and then

SELF-SORTING MIXED-RADIX FFT 17

TABLE I

Operation Counts for Transforms of Length n

BASIC FAST

n Adds Mults Adds Mults

2 4 0 4 0
3 20 16 I2 4
4 24 0 16 0
5 12 64 32 12
6 92 64 36 8

multiplying the result by R takes a total of 46 real additions and 28 real
multiplications. Direct multiplication of z by the product matrix R W,, on the other
hand, would require 120 real additions and 120 real multiplications.

We are now ready to establish the operation count for the whole FFT algorithm.
First, it is useful to note the operation count per real point for the computation
x=RW,z. This is found by adding the operations for (n - 1) complex
multiplications to the “fast” entries of Table I, and dividing by 2n. The results are
summarized in Table II.

So, for example, if n = 2 is a factor of N used in the complex transform algorithm.
then the pass corresponding to that factor will contribute 3N real additions and 2N
real multiplications to the operation count. There is one saving which we have not yet
taken into account; in the skeleton Fortran routine of Section 2, R(K) is the identity
matrix for K = 0, and the corresponding (n - 1) complex multiplications can be
omitted. The number of times this happens at each stage is given by the variable LA.
If N=n,n,n,...n,, then at successive stages LA = 1, n,, n,n,,... and the total
number of complex multiplications saved is

(n, - 1) + nl(nz - 1) + n,n,(n, - 1) + .a. + n,nz f.. nk-,(nk- l),

which is just (N - 1). (Singleton [20] gives a similar demonstration.)
Suppose we have factorized N in the form N = 2p394’5”6’. Using the results of

TABLE II

Operations per Real Point for x = SW,z

n Adds Mults

2 1.5 1

3 2.61 2
4 2.15 1.5

5 4 2.8
6 3.83 2.33

18 CLIVE TEMPERTON

TABLE 111

REAL OPERATION COUNTS FOR COMPLEX FFT’s OF
LENGTH N

N

n = 2. 3. 5 II = 2. 3. 4. 5. 6

Adds Mults Adds Mults

180~2’. 3?. 5 4082 2452 3842 1972
192 = 2”. 3 4098 2308 3778 1668
200= 2’ 5? 4602 2644 4502 2444
216~2’. 3’ 4970 3028 4538 2164
240=2”.3.5 5602 3268 5322 2708
256 = 2” 5634 3076 5122 2052

Table II, and including the above saving, the total operation count for the complex
FFT algorithm is:
number of real additions:

2N(1.5~ + 2.67q + 2.75r + 4s + 3.83t - 1) + 2;

number of real multiplications:

2N(p + 2q + 1.5r + 2.8s + 2.33t - 2) + 4.

Notice, incidentally, that the operation count is independent of the order in which the
factors are used.

Table III lists the number of operations required for a range of values of N. both
for a basic FFT algorithm allowing only the prime factors 2, 3 and 5, and for a “de
luxe” version including the factors 4 and 6. (In ambiguous cases, factors of 6 are
extracted first.) Several observations are in order here. A direct calculation of the
DFT would require almost 4N2 real additions and 4N2 multiplications; the counts in
Table III are smaller by almost two orders of magnitude. Inclusion of the factors 4
and 6 gives a significant improvement. Finally, there is nothing very special (except
program simplicity) about the case N = 2p.

4. NOTES ON IMPLEMENTATION

Thus far we have considered the efficiency of the FFT algorithm only in terms of
the number of arithmetic operations required. Just as important is the efficiency in
terms of the utilization of the available computer hardware, and for current large-
scale scientific applications this raises the question of vectorization.

The problem of vectorizing the FFT algorithm on the Cray-1 and Cyber 205 has
been discussed in detail elsewhere [24,25], and here only a summary will be given.

SELF-SORTING MIXED-RADIX FFT 19

Basically we are concerned with the inner loop of the subroutine PASS outlined in
Section 2. This loop vectorizes naturally with an increment of 1 between successive
elements of vectors (assuming here that the real and imaginary parts of complex
numbers have been stored in separate arrays). Note that the vectors we are discussing
now should not be confused with the mathematical vectors A(Z) and C(J), which
were used only for compactness of notation; for clarification, consider the example of
IFAC = 2 given in Section 2. The vector length is LA, which unfortunately never
becomes very long for the modest values of N encountered in most applications. For
example, if N = 180 = 5 x 6 x 6 the vector length on successive passes is 1, 5, 30,
using decimation in frequency.

On the Cray-1 (unlike the Cyber 205), the elements of a vector do not have to be
contiguously stored, but can be spaced at any constant increment. This allows us to
turn the nested loop structure of subroutine PASS “inside out,” giving instead a
vector length of N/(IFAC * LA). The case N = 180 = 5 x 6 x 6 can then be
implemented with vector lengths 36, 6, 30 on successive passes, by choosing the most
appropriate structure at each stage. Even on the Cray-1, which reaches half
maximum speed with vector lengths as short as 10 or thereabouts, this is still some
way from being optimal. Also the inside-out loop structure does have certain
technical drawbacks as it involves additional memory references, redundant
multiplications and a risk of bank conflicts [24].

As hinted in Section 2, the FFT variant due to Pease [181 appears to be more
suitable for vectorization, since it can be implemented with a vector length of
N/IFAC throughout. But as shown in [24] this is true only if the permutation step
can be dispensed with; otherwise the advantage gained from the longer vectors is
outweighed by the time required for reordering.

The solution adopted on the Cray-1 arises from the fact that we usually need to
perform many transforms simultaneously. It is then easy to arrange the data so that
the transforms are performed in parallel, with each vector containing one element
from each transform, and the vector length equal to the number of transforms being
performed. The details of the indexing are transferred to outer loops, and become
irrelevant from the standpoint of vectorization. As the optimum vector length is 64,
and we can usually arrange for the number of simultaneous transforms to be of that
order or even greater, the problem was considered solved for that machine.

Table IV lists the times per transform for complex FFT’s on the Cray-1 for various
values of N, comparing the speed of single transforms (vectorized as efficiently as
possible) with multiple transforms (64 in parallel). All routines were written in
Fortran. As expected, the advantage gained by performing many transforms in
parallel decreases as N increases, but even at N = 1024 it is still

20 CLIVE TEMPERTON

TABLE IV

Times per Transform (msec) for Complex FFT’s

N

Cray- I Cyber 175

Single Multiple Single Multiple

32 0.074 0.012 0.750 0.280
36 0.086 0.016 0.780 0.330
96 0.150 0.052 1.940 I.110

100 0.160 0.064 2.090 1.550
1024 I.110 0.760 21.140 19.000

On the Cyber 205, which requires vector lengths of order 100 to reach half
maximum speed, there is no way in which a single transform of modest length could
be vectorized very efficiently. Unfortunately, even the multiple vectorization scheme
adopted on the Cray-1 proves to be inadequate on the Cyber 205. First, the
requirement that vector elements be contiguous reduces our freedom to specify the
layout of the data; the multiple approach only works if the simultaneous transforms
are interleaved (i.e., the data vectors to be transformed are given as rows of a
columnwise matrix). More seriously, the efftciency continues to improve as vector
lengths increase (up to a maximum of 64K- l), and vector lengths should preferably
be at least of order several hundred, typically rather more than the number of
transforms which can conveniently be performed in parallel. Fortunately, interleaving
the simultaneous transforms provides a solution. Recall from Section 2(d) that, for
the self-sorting decimation-in-frequency algorithm for a single transform of length
N = pqr, the second stage is equivalent to the first stage of p interleaved transforms
each of length qr, and the third stage is equivalent to thefirsl (and only) stage of pq
interleaved transforms each of length I-. Suppose now that we have M interleaved
transforms each of length N =pqr. Applying the simple multiple vectorization
technique gives a vector length of M throughout. However, from the remarks above
we see that after the first pass the remainder of the process is equivalent to Mp
interleaved transforms of length qr, and so the second pass can be done with a vector
length Mp. The third pass is then equivalent to Mpq interleaved transforms of length
r, and can be done with a vector length Mpq. Thus interleaving the transforms, which
had to be done in order to implement the multiple approach at all, in fact results in
significantly longer vectors after the first pass. This procedure could of course also be
applied on the Cray-1, but there would be little gain unless the number of transforms
was much less than 64.

An analogous result for the decimation-in-time algorithm was used by Korn and
Lambiotte [161.

Finally, a note on assembly language programs. Implementing a multiple self-
sorting mixed-radix FFT package in assembly language is a task not to be under-
taken lightly, as the author will wearily testify; however, depending on the computer,

SELF-SORTING MIXED-RADIX FFT 21

the compiler and the application, it may be worthwhile. On the Cray-1, for example,
a package written in CAL performs FFT’s at around 100 megaflops, approximately
twice the rate obtained in Fortran. The provision of vector registers, and the register-
to-register arithmetic, offer ample scope for the CAL programmer to overlap
arithmetic with memory references and to organize the scheduling of instructions at a
level beyond the capabilities of the Fortran compiler. On the Cyber 205, on the other
hand, the memory-to-memory arithmetic makes such considerations irrelevant, and
very little is gained by the use of assembly language (though efficient vectorization
requires the use of non-portable Fortran).

5. TWO-DIMENSIONAL TRANSFORMS

In some circumstances we need to perform a two-dimensional complex discrete
Fourier transform, defined by

N-l M-1
xj.k= I -K- vz

n=O zo
m,n exp(2ijmrrlM) exp(2ikmr/N).

In the conventional approach, we first compute N independent DFT’s given by

M- I

and then compute M independent DFT’s given by
N-I

.Yj,k = \‘ yj,, exp(2iknn/N).
il=O

In other words, we first compute DFT’s along rows of the grid, and then compute
DFT’s along columns of the grid (or, of course, vice versa).

It does not seem to be generally known that there is a faster way of implementing
Eq. (22). Henrici [131 mentions an alternative approach, but states that it is only
faster for the case N = 2p. However, this is because he uses a version of the FFT in
which the rotation factors are not separated out. We will show here that the alter-
native approach can be faster for any composite N. The two-dimensional FFT
.algorithm is most easily derived using matrix algebra. Equation(22) may be written
in the form

x=(W,,x W,,,)z.

For simplicity we will consider the case M = N =pq and choose the self-sorting
variant of the one-dimensional algorithm, though any other variant would do equally
well. From Eq. (7) we have

22 CLIVE TEMPERTON

Using the rules of matrix algebra for Kronecker products, we can rewrite this as

(W,, x W,,) = (W, x I, x w, x I,)(fy x qp; x 0;) .

(w, x 1, x w, x I,). (23)

Equation (23) is a direct two-dimensional analogue of Eq. (7). Reading the factors
from right to left, we have first a set of 4’ (p x p) two-dimensional transforms, then a
diagonal matrix of rotation factors, then a permutation matrix, and finally a set ofp’
(q x q) two-dimensional transforms. The important point is that the rotation factors
have been multiplied together, and there are now only N2 of them; in the conven-
tional approach the N transforms along rows contribute N2 rotation factors, and the
N transforms along columns contribute a further N’, so there are twice as many
altogether. If redundant multiplications by 1 are avoided in each case, then the ratio
becomes slightly less favourable, but Eq. (23) still represents a significant
improvement. The extension to more factors is straightforward, as is the extension to
the case M # N. By way of illustration, for M = N = 64 = 43 the three-factor
analogue of Eq. (23) includes 7047 non-redundant multiplications by rotation factors,
while the conventional approach requires 10368.

The operation count for the rest of the algorithm, excluding the multiplications by
rotation factors, is in general the same whichever approach is used. However. for
certain factors (e.g., 3 x 3 and 5 x 5) the small two-dimensional transforms can
themselves be implemented using fewer operations than the conventional approach,
thus affording further savings; the tricks required here are analogous to those used by
Winograd [29] for one-dimensional transforms.

Also straightforward is the extension to three or more dimensions; the higher the
dimensionality of the transform. the greater the savings which can be made.

6. CONCLUDING REMARKS

The aim of this paper has been to present some of the ideas which have contributed
towards the development of FFT packages used in numerical weather prediction
models at ECMWF and the UK Meteorological Office. In particular the matrix
algebra approach of Section 2 may help to spread understanding of how the many
variants of the FFT algorithm can be derived. The skeleton Fortran routines, together
with the small transform algorithms of Section 3, should provide a basis from which
interested readers can construct FFT programs to suit their own requirements. An
effort has been made to dispel some lingering myths about the FFT. to point out the
advantages of the self-sorting variants and of vector techniques, and briefly to
indicate how savings can be made in multi-dimensional transforms. Finally, it is
hoped that something of the intriguing character of the algorithm has been conveyed.

REFERENCES

I. R. BELLMAN. “Introduction to Matrix Analysis,” McGraw-Hill. New York, 1970.

2. E. 0. BRIGHAM. “The Fast Fourier Transform,” Prentice-Hall, Englewood Cliffs. N.J.. 1974.

SELF-SORTING MIXED-RADIX FFT 23

3. W. BOURKE, An efficient, one-level, primitive-equation spectral model, Monthly Wearher Rec. 100
(1972), 683-689.

4. D. M. BURRIDGE AND C. TEMPERTON, A fast Poisson-solver for large grids, J. Comput. Phrs. 30
(1979), 145-148.

5. W. T. COCHRAN, et al., What is the Fast Fourier Transform? IEEE Trans. Audio Electroacoust. I5
(1967), 45-55.

6. J. W. COOLEY AND J. W. TUKEY, An algorithm for the machine calculation of complex Fourier
series, Math. Camp. 19 (1965). 297-301.

7. C. DE BOOR, FFT as nested multiplication, with a twist. SIAM J. Sci. Stat. Comput. 1 (1980).
173-178.

8. M. DRUBIN, Kronecker product factorization of the FFT matrix, IEEE Trans. Comput. 20 (197 I),
59&593.

9. W. M. GENTLEMAN AND G. SANDE, Fast Fourier Transforms-For fun and profit. Proc. AFIPS
Joint Computer Conference 29 (1966), 563-578.

IO. J. A. GLASSMAN. A generalization of the fast Fourier transform. IEEE Trans. Comput. 19 (1979).
105-l 16.

Il. B. GOLD AND C. M. RADER, “Digital Processing of Signals,” McGraw-Hill, New York, 1969.
12. I. J. GOOD, The interaction algorithm and practical Fourier analysis, J. Roy. Statist. Sot. Ser. B 20

(1958) 361-372.
13. P. HENRICI, Fast Fourier methods in computational complex analysis. SIAM Rec. 21 (1979).

481-527.
14. J. L. HOLLOWAY. M. J. SPELMAN. AND S. MANABE, Latitude-longitude grid suitable for numerical

time integration of a global atmospheric model, Monthly Weather Reel. 101 (1973). 69-78.
15. D. KAHANER. Matrix description of the Fast Fourier Transform, fEEE Trans. Audio Electroacoust.

18 (1970), 442450.
16. D. G. KORN AND J. J. LAMBIOTTE, Computing the Fast Fourier Transform on a vector computer.

Math. Camp. 33 (1979) 977-992.
17. S. A. GRSZAG. Numerical simulation of incompressible flows within simple boundaries. I. Galerkin

(spectral) representations, Stud. Appl. Mufh. 50 (1971). 293-327.
18. M. C. PEASE. An adaptation of the Fast Fourier Transform for parallel processing. J. ACM 15

(1968), 252-264.
19. A. ROBERT. J. HENDERSON, AND C. TURNBULL, An implicit time integration scheme for baroclinic

models of the atmosphere, Month!v Weather Rer. 100 (1972). 329-335.
20. R. C. SINGLETON. An algorithm for computing the mixed radix Fast Fourier Transform. IEEE

Trans. Audio Electroacoust. 17 (1969). 93-103.
21. R. C. SINGLETON. On computing the Fast Fourier Transform. J. ACM 10 (1967). 647-654.
22. G. STRANG. “Linear Algebra and Its Applications,” 2nd ed.. Academic Press, New York, 1980.
23. P. N. SWARTZTRAUBER, The direct solution of the discrete Poisson equation on the surface of a

sphere, J. Comput. Phys. 15 (1974), 46-54.
24. C. TEMPERTON, Fast Fourier Transforms and Poisson-solvers on Cray-1. in “Supercomputers,”

Infotech State of the Art Report, Infotech International Ltd., Maidenhead. U.K., 1979.
25. C. TEMPERTON. “Fast Real Fourier Transforms on the Cyber 205.” Met. 0. 1 I Technical Note

No. 155. Meteorological Office. U.K.. 1982.
26. F. THEILHEIMER. A matrix version of the Fast Fourier Transform, IEEE Trans.

