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Some examples are given of the uses of the FFT algorithm in numerical weather prediction. 
The algorithm is derived by means of matrix factorization, in such a way that the many 
possible variants can be obtained in a unified manner. Particular attention is paid to self- 
sorting variants of the algorithm, but skeleton Fortran routines are included for all the 
“canonical” forms. The FFT works by decomposing the discrete Fourier transform into a 
sequence of short transforms. Algorithms for these short transforms are presented and used to 
derive operation counts for the whole algorithm. The implementation of the FFT on vector 
computers is described, and in the final section it is demonstrated how savings can be 
achieved in the case of two-dimensional transforms. 

1. INTRODUCTION 

Much of the progress made in computational physics during the past fifteen years 
would not have been possible without the Fast Fourier Transform (FFT) algorithm. 
The examples quoted here are taken from the field of numerical weather prediction, 
but readers working in other areas will be able to supply similar examples. 

At the European Centre for Medium Range Weather Forecasts (ECMWF), a 
IO-day numerical weather forcast is run each day using a three-dimensional finite- 
difference model of the global atmosphere with 15 levels in the vertical and a regular 
96 x 192 latitude-longitude grid in the horizontal. The computational task of 
integrating such a large model is made feasible only by using special methods to 
lengthen the maximum stable timestep. This is achieved in two ways, in both of 
which the FFT plays an important role. 

First, the maximum stable timestep is proportional to the physical distance 
between gridpoints; the convergence of the meridians implies that the gridpoints 
become very close together in the zonal direction as the grid approaches the poles. 
One remedy, now almost conventional in NWP models based on a regular 
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latitude-longitude grid, is to filter out the small-scale Fourier components of the 
mode1 variables (or their time-tendencies) near the poles, thus increasing the effective 
zonal separation of the gridpoints without sacrificing the regularity of the grid 
[ 14, 281. This filtering is most efficiently achieved by Fourier transforming the fields. 
setting the high-wavenumber coefftcients to zero, and then transforming back to 
physical space. An alternative technique, currently implemented in the ECMWF grid- 
point model, is to include implicit latitude-dependent zonal diffusion terms. This 
technique too is most efficiently implemented via the FFT. 

Second, the maximum timestep is inversely proportional to the frequency of the 
most rapidly oscillating solutions of the model equations. These are the inertia- 
gravity waves which have only small amplitudes in the real atmosphere and are of 
little significance for NWP. By treating certain linear terms in the model using a 
Crank-Nicholson time-integration procedure rather than the usual explicit centred 
(leapfrog) scheme, the troublesome small-scale high-frequency gravity waves can be 
artificially slowed down. The resulting semi-implicit time integration algorithm ] 19 ] 
remains stable with a timestep typically 6 times longer than would be possible with 
an explicit scheme, while yielding practically identical results. Implementation of the 
semi-implicit algorithm in a multi-level mode1 requires the solution at each timestep 
of a three-dimensional discrete elliptic equation. Diagonalizing the vertical part of the 
finite-difference operator decouples this equation into a set of two-dimensional 
Helmholtz equations, which are solved by combining a fast direct solver in spherical 
geometry [23] with the technique described in [4] for large out-of-core problems. 
Most of the work in the fast two-dimensional elliptic solver consists of Fourier 
transforms between gridpoint and wavenumber space. 

With the model resolution currently employed, a IO-day forecast requires approx- 
imately 15 million real Fourier transforms, each of length N = 192. 

Even greater use of the FFT is made by the spectral model developed as a possible 
alternative to the gridpoint model. Here the horizontal fields are represented not by 
values at an array of gridpoints but by coefficients of spherical harmonic basis 
functions. Spectral models are free of the pole problem, and the semi-implicit 
algorithm is easily implemented since spherical harmonics are eigenfunctions of the 
Helmholtz operator. However, the model’s nonlinear terms are most efficiently 
computed by first transforming to physical space, evaluating the terms on a suitable 
grid, and then transforming back to spectral space [3, 171. The zonal part of the two- 
dimensional transforms between gridpoint and spectral space again consists of 
Fourier transforms. At the current quasi-operational resolution of the ECMWF 
spectral model, a lo-day forecast requires about 24 million real Fourier transforms of 
length N = 192. 

In addition to its many applications in computational physics and related fields 
such as signal processing, Bre FFT has found a number of uses in computational 
complex analysis, as recently reviewed by Henrici [ 131. 

While the general principle of how the FFT works is reasonably straightforward 
and quite well known, the precise details of the algorithm (or family of algorithms, 
for there are many variants) are somewhat involved, and thanks to the widespread 
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availability of “black box” routines many users have been able to avoid coming to 
terms with them. This is unfortunate for several reasons. First, the black boxes are 
not always as efficient or as general as they might be, and myths persist in some 
quarters that, for example, the algorithm is only efficient if N is a power of 2, or that 
a permutation of the data is necessary either before or after the transform. Second, 
scientists faced with transferring their calculations to new computer architectures 
need to understand the algorithm in order to exploit the transfer to the full. A third, 
less utilitarian, reason is simply that the FFT is a very interesting algorithm. 

Many papers have been written explaining the details of the algorithm, and the 
only excuse for adding to the total is that the author believes the approach presented 
here is more general and flexible than most. Also, routines based on the ideas 
discussed here (particularly as implemented on the vector machines Cray-I and 
Cyber 205) have attracted some interest in the numerical weather prediction 
community, and these ideas may have wider application. 

This paper will consider the Fast Fourier Transform of purely complex data; the 
specialization to the real case will be left for a later publication. The FFT will be of 
the conventional type in which no restrictions are placed on the factors of N, so we 
will not treat the special case of mutually prime factors due to Good [ 121 and 
developed more recently by Winograd [29]. Attention will be focussed in particular 
on “self-sorting” variants of the algorithm which do not require any scrambling or 
unscrambling of the data before or after the transform. 

2. DEVELOPMENT OF THE ALGORITHM 

(a) General Remarks 

There are basically two approaches to the problem of explaining the FFT 
algorithm. The first takes the defining equation 

.v- L 
xj = K’ zk exp(2ijkn/N), 

.CO 

O(j<N-1. (1) 

and proceeds rather directly by manipulation of the indices j and k. Examples of this 
approach are the papers by Cooley and Tukey [6], Gentleman and Sande 191, and 
the book by Brigham [2]. If N is the product of two factors, this approach allows a 
rather simple explanation of what is going on. However, the extension to many 
factors requires a forest of summation signs and multiple subscripts which obscures 
the details and hides the many alternatives which are available. 

The alternative is to write Eq. (1) in matrix form, 
x= W&Z, (2) 

and to demonstrate that the matrix W,v can be factorized as a product of sparse 
matrices [8, 10, 15, 18, 261. We refer to W, as the DFT (Discrete Fourier 
Transform) matrix of order N. This approach has a more abstract flavour, and can 
become somewhat unwieldy. However, it is possible to develop a compact notation 
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which enables us to treat many different variants of the FFT algorithm in a unified 
manner. Strang [22, p. 303) has made the nice observation that “certain special 
matrices will fall apart when they are dropped the right way.” We shall see that. in 
the case of the DFT matrix, the pieces can be reassembled in many different ways. 

In the development which follows, element (j, k) of a matrix A will be denoted by 
[A] (j, k), with the convention that the rows and columns of an N x N matrix are 
indexed from 0 to N - 1. For example, from Eqs. (1) and (2) we have 

[ W,h,](j, k) = ujk, (3) 

where o = exp(2in/N). Our aim will be to show that if 

then 
N=n,n,...n,-,n, 

W,v= TkTk-, ... TzT, (4) 

and to determine explicitly the form of the factors Ti. 

(b) The Two-Factor Case 

Let N =pq. Then for any 0 <j Q N - 1, we can write j = lp + m, where 
O<l<q-1, O<m<p-1. Similarly for any O<k<N-1, we can write 
k=rq+s, where O<r<p- 1, O<s<q- 1. 

Let I, be the identity matrix of order r. Then for 0 < p < r - 1, 0 < q < r - 1, 

]I,l(P, 9) = a,,, (5) 

where 6 is the Kronecker delta. 
Following Bellman [ 11, define a Kronecker matrix product by A x B = (aijB). In 

the present notation, let A and B be square matrices, of order p and q, respectively. 
Then 

[A x B](tq + u, rq + s) = [A](t, r) . [B](u, s). 

Define a permutation matrix Pt of order pq by 

[Pf,l(j, k) = 1 if j=rP+s and k=sq+r, 

=o otherwise. 

(6) 

Finally, define a diagonal matrix D: of order pq by 

[D;](j, k) = dm if j=k=sq+m, 

= 0 otherwise, 

where o = exp(2in/pq). 
We can now establish the following matrix factorization theorem: 

wpc, = (Wq X 1,) P;D;( W,, x I,). (7) 
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Proof: From Eqs. (3), (5) and (6), 

[ wp x I&q + 24, rq + s) = umsu. 

(Here o4 = exp(2ix/p).) 

(8) 

Premultiplication by a diagonal matrix multplies the rows, so from Eq. (8) and the 
definition of 0: we have 

[D;(W, x I,)](tq + u, t-q + s) = w’“w~~~S~,,. 

Premultiplication by the permutation matrix Pf: takes row (tq + u) to row (up + t), 
hence 

[P:D:(W, x Z,)](up + I, rq + s) = d’w~*~B~~. (9) 

Now, we also have, from Eqs. (3), (5) and (6), 

[ w, x Z,](rp + m, up + t) = W’Wmr . (10) 

By the usual rules of matrix multiplication, Eqs. (9) and (10) give 

W, x 1,) p::D;(W, x 4Jl(lp + m v + s) 
p-1 q-1 

cc -s 
,Yo ,ecl 

W’p”W’“Wq’t8mr is,, . 

The presence of the factors a,, and 6,, ensures that there is only one non-zero 
contribution to this sum, namely, 

since mpq = 1, 

Thus element (j, k) = (lp + m, rq + s) of the product matrix is mik, i.e., it is equal to 
element (j, k) of Wpq, and the theorem is proved. 

In keeping with Eq. (4), we write Eq. (7) in the form 

W,, = T, T, . 

The generalization to more factors depends on how this is done. For the time being, 
we write 

T, = P;D;( W, x I,), 

T, = W, x I,), 

and note that since Py = 07 = Z,, we could write 

T, = (P:D’: x I,)< W, x Zp). 
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This arrangement leads to a version of the algorithm known as “decimation in 
frequency” [ 111. 

(c) Extension to More Factors 

The extension to multiple factors is now simply a matter of matrix algebra. For 
example, if N = ~qr, we have, from Eq. (7), 

and using Eq. (7) again to expand Wqr, 

Writing this in the form 

we have 
Wpqr = T, Tz T, 

T, = P&D3 W, x Iqr)r 
T, = CD: x I,)(W, x I,,.), 
T, = ( W, x J,J, 

and we could write 

T, = (CD; x &,W’r x Ipq). 

The pattern is now beginning to emerge. Suppose N = n, nz ..e A~. Define I, = 1, 
li+,=nili for l<i<k, and mi=N/li+,. Then the general form is given by Eq. (4), 
with 

Ti = (P~iD~i X I[,)( Wni X I,v/ni)* (l-2) 

Equation (12) may be proved formally by induction. Each stage of the transform 
algorithm, corresponding to a factor n of N, consists of a set of transforms of order n, 
then a multiplication by a diagonal matrix, and finally a permutation of the results. 

The above development may be mathematically convincing, but it does not convey 
immediately what the corresponding computer program would look like; most of us 
think more easily in Fortran. The virtue of the matrix formalism is that, having 
developed one form of the FFT algorithm, many other variants can easily be 
deduced. 

A skeleton Fortran program to implement Eqs. (4) and (12) will now be presented. 
Suppose that the factors of N have been stored in an array IFAX(1) to IFAX- 
(NFAX), and that a complex array of trigonometric function values has been defined 
by 

TRIGS (K + 1) = exp(2iKrr/N), O<K<N-1. 
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Suppose that the data to be transformed are in an array A, and that a work array 
C is provided. Each array acts alternately as input and output for successive stages of 
the algorithm. The outer structure of the FFT routine is then: 

C DECIMATION IN FREQUENCY 
COMPLEX A(N), C(N), TRIGS(N) 
INTEGER IFAX (NFAX) 
LA = 1 
DO 10 I = 1, NFAX 
IFAC = IFAX(1) 
CALL PASS (A, C, TRIGS, IFAC, LA, N) 

C [now reverse roles of A and C] 
LA = LA * IFAC 

10 CONTINUE 
STOP 
END 

The subroutine PASS has the following structure: 

C SELF-SORTING, DECIMATION IN FREQUENCY 
SUBROUTINE PASS(A, C, TRIGS, IFAC, LA, N) 
COMPLEX A(N), C(N), TRIGS(N) 
M = NIIFAC 

C Define IFAC base addresses in A 
IA=0,IB=M,ZC=2*M,ID=3*M ,... 

C Define IFAC base addresses in C 
JA=0,JB=LA,JC=2*LA,JD=3*LA ,... 

C . . . 
I= 1 

J=l 
JUMP = (IFAC - 1) * LA 
DO20K=0,M-LA,LA 
DO 10L= l,LA 
C(J) = R(K) * (W(IFAC) * A(I)) 
I=lf 1 
J=J+ 1 

10 CONTINUE 
J=JfJUMP 

20 CONTINUE 
RETURN 
END 



8 CLIVE TEMPERTON 

In the inner loop, W(IFAC) is the DFT matrix of order IFAC. R(K) is a diagonal 
matrix defined by 

Q(K) = diag(TRIGS( l), TRIGS(K + l), TRIGS(2 * K + 1 )....). 

A(Z) and C(J) are vectors of length IFAC defined by A(Z) and C(J) are vectors of length IFAC defined by 

A(Z) = A(Z) = 

In practice the inner loop would of course be written out as a sequence of scalar 
operations, preferably in real arithmetic, using various tricks to simplify the 
multiplication by W(IFAC) (see Section 3), and taking account of the fact that the 
first element of Q(K) is always 1. For example, if ZFAC = 2 the inner loop (in 
complex arithmetic) becomes simply: 

DO 10Z. = 1,LA 
C(JA+J)=A(ZA+Z)+A(ZB+Z) 
C(JB + J) = TRIGS(K + I) * (A(ZA + I) - A(ZB + I)) 
z=z+ 1 
J=J+ 1 

10 CONTINUE 

In many circumstances it is worth providing a special case for K = 0, since Q(0) is 
just the identity matrix. 

Notice that the final results of the transform emerge in their natural order; the 
required internal permutations are implemented simply by the indexing scheme 
presented above. This is the essence of the “self-sorting” FFT, which distinguishes it 
from other variants in which a separate data permutation is required either before or 
after the transform. The only penalty is that two arrays are needed, since in general 
the computations cannot be performed in place. 

(d) Alternative Self-Sorting Algorithm 

Let us return to Eq. (7), and split the two-factor case in a different way, 

T, = ( W,, x I,), 

T2 = (W, x Z,) P;D;, 

and notice that we could have written 

T, = ( Wp x Z,)(P;D; x Z,). 
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This rearrangement gives rise to the form of the algorithm known as “decimation in 
time.” From Eq. (7) we have 

w*qr = wum* = ( w, x z,,, P;qD;q( w,, x I,) 

and using Eq. (7) again to expand Wps, 

wpq* = (Wr x zpq> wxYwq x zpr)(pp; x ZJW, x Zqr), 

which we can write as the product of three factors: 

(13) 

T, = < W, x ZJ(P;D; x I,), 

T, = ( W, x Zpq) Pf’” 0;“. 

Again a pattern emerges, but this time the pattern is somewhat different. As before let 
N = n1n2 --. nk, I,= 1, fi+,=niZi for l<i<k, and mi=N/Zi+,. Then the general 
form is given by Eq. (4) with 

Ti = ( Wni X Z~,,i)(P~iD~i X Zmi)* (14) 

Again, Eq. (14) can be proved formally by induction. Notice also that Eq. (13) for 
three factors may be derived from Eq. (11) by a different route. Since Wpqr is 
symmetric we can transpose the factorization of Eq. (11); using the identities 
(AB)T = BTAF, (A X B)T = AT X BF, (Pt)’ = Pi, and the fact that the W, Z and D 
matrices are themselves symmetric, and finally interchanging p and r, gives Eq. (13). 
In fact the same process can be applied to the general case, Eq. (12), to give Eq. (14). 

This version of the algorithm gives rise to a program similar to that already 
presented, except that the variable LA now decreases on successive passes, the 
indexing of the input and output arrays within the subroutine PASS is interchanged, 
and the multiplication by R(K) is done before the multiplication by W(IFAC). For 
completeness we give the corresponding routine below: 

c DECIMATION IN TIME 
COMPLEX A(N), C(N), TRIGS(N) 
INTEGER IFAX(NFAX) 
LA=N 
DO 10Z= 1, NFAX 
IFAC = IFAX 
LA = LAIIFAC 
CALL PASS(A, C, TRIGS, IFAC, LA, N) 

c [now reverse roles of A and C] 
18 CONTINUE 

STOP 
END 
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Subroutine PASS is the same as before, except that the inner loop is replaced by 

C(I) = W(IFAC) * (Q(K) * A(J)). 

In this self-sorting variant of the FFT, the intermediate results can be characterized 
in a manner which is reminiscent of the way the algorithm is often derived in the field 
of signal processing [ 111. For example, in the three-factor case N =~qt-. the first 
stage consists of DFT’s of length p on qr interleaved “samples” of the data; in the 
second stage we combine these into DFT’s of length pq on r samples of the data, and 
in the final stage these are combined into a single DFT of length pqr. (Hence the 
name “decimation in time.“) 

There is no such simple interpretation of the intermediate results for the first self- 
sorting variant (decimation in frequency). However, we can make a “dual” obser- 
vation, namely, that the last stage is equivalent to pq interleaved transforms of length 
r; the second and third stages together are equivalent to p interleaved transforms of 
length qr; and of course the three stages together constitute one transform of length 
pqr. This observation is important for the vectorization techniques discussed in 
Section 4. 

(e) Other Forms 

We now develop a form of the FFT algorithm in which all the permutations are 
delayed until the end. We show that if 

r 
N=n,n, .a- nk-,nk 

then 

W,=P,P,-.. Pk-,PkTkTk-,... T,T,. (15) 

First note the following useful lemma. If A,, B, are any square matrices of order p 
and q, respectively, then 

Pg4, x B4) = (B4 x A&J P;. 

Using Eq. (16), Eq. (7) can be rewritten as 

W,, = Pz(ip x W,) D;( W, x ZJ. 

We can now write 

W,, = P, P, T2 T, 

(16) 

(17) 

with 
T, = D”,<W, x I,), 

T, = (1, x D:)(Z, X W,,, 

P, = PC, 

P, = I, x PY(= I,,). 
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For N = pqr, we have 

W p(qr) = fwp x YJ D&W, x 47,) 

and using Eq. (17) again to expand W,, , 

Wpqr = P&VP x WVpq x YW, x WV, x Wq x 1,) D&W, x Zqrh 

which can be written as 

Wpqr = PIP?, T,T, T, 
with 

T, = D&( Wp x Zqrh 

T, = (1, x DP)V, x Wq x I,), 

T, = Vpq x D:)Vpq x WA 

p, = P&Y 

p,=z,xp;, 

P, = zpq x P;(= IN). 

As before, define 1, = 1, ii, , = nili for 1 < i Q k, and m, = N/Zi+ , . Then the general 
case is given by Eq. (15) with 

Ti = (Zli X Dzi>(Z,i X Wni X I,!), 

pi = (zji X Pzi)* 
(18) 

This form corresponds to the Gentleman-Sande [9] version of the FFT algorithm, 
and is another form of decimation in frequency. The multiplications by Ti can be 
done in place, and in fact so can the permutations Pi, though the logic may then 
become rather complicated; see Singleton [20] for details. This form of the FFT has 
the advantage (rarely important on modern computers) that only a single array is 
required, but at the cost of having to perform an explicit unscrambling of the data at 
the end of the algorithm. 

For a Fortran implementation we use the same routine as for self-sorting 
decimation in frequency, but within the subroutine PASS the inner loop is replaced 
by 

C(J) = R(K) * (W(IFAC) * A(J)). 

The index Z and the corresponding base addresses are no longer required, and the 
array C can occupy the same locations as the array A. 

The Cooley-Tukey [6] version of decimation in time is obtained by performing the 
permutations before the remainder of the algorithm. Again using Eq. (17) and the fact 
that PiDi= DZPZ, Eq. (7) becomes 

Wpq = ( Wq x Zp) D;(Z, x W,) Pt. 
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The generalization to three factors is analogous to the Gentleman-Sande case, but 

using Wpqr = WIPqjr. Skipping the details, we obtain (for k factors) 

W,v= T,T,_, ... T,T,P,P?... P,m,P, (19) 

with 

Ti = (Z,i X W~i X Z,i)(Z,i X 0;:‘). 

pi = (Imi X pf;i). 

As in the case of the two self-sorting algorithms, the Cooley-Tukey version can be 
obtained simply by transposing the Gentleman-Sande factorization. The appropriate 
Fortran routine is now that for decimation in time, but the inner loop of subroutine 
PASS becomes 

C(J) = W(IFAC) *(R(K) * A(J)). 

Yet another distinct form of the algorithm using decimation in frequency is that 
due to Pease [ 181, which can be derived from the Gentleman-Sande form. In order to 
do so we need another useful identity, 

pp4pqr = p4 
r P Pr’ 

and a corollary of Eq. (16), 

CAP x Bq) = P;(Bq x AP) PZ. 

(20) 

(21) 

Consider the factors Ti of the Gentleman-Sande algorithm, given by Eq. (18). 
Using Eq. (21) we can rewrite each of them as 

Ti = PTi”i(o$i X zli)( W,, X Ilip,) Piini* 

At the left-hand end of the sequence Tk T,-, . . - T, T, we now get 

P;“k”k = P& A 1 

while at the right-hand end we get 

Within the sequence we get pairs of permutation matrices of the form 

p4t1 pV% 

mi+lnitl Ii ’ 

Since li+ , = Z,n, and mi+ ,n,+, = m,, we can write this as 

plbr,p;rini = p”, - p”, 

! I limi - N:ni 

using Eq. (20). 
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We now have a new factorization which is still of the form (15), but with 

‘i = P?m,(DZi X IJ( W,,i x ZNlni). 

The advantage of this form (especially for the case n, = 2 for all i, with which Pease 
was primarily concerned) is that the structure remains the same for each pass; only 
the diagonal matrix (D2i x Iii) changes from one pass to the next. This form is 
therefore rather suitable for hardware implementations, although an explicit 
permutation of the data is still required to complete the transform (in fact the same 
permutation as in the Gentleman-Sande algorithm). Incidentally, readers who refer to 
Pease’s paper [ 181 should note that his definition of the Kronecker product is 
different from that used here. 

The appropriate Fortran routine is that for self-sorting decimation in frequency, 
except that subroutine PASS is always called with LA = 1; the nested loop structure 
then collapses to a single loop with K as the control variable. The two statements 
incrementing J can then be combined to give J = J + IFAC. However, the indexing of 
the TRIGS array is now correct only for the first pass. There are two ways of 
retrieving the situation. We can provide a different TRIGS array for each pass; this is 
expensive in storage, but to anticipate the results of Section 4 it may be the best 
solution on a vector computer. Alternatively we can retain a nested loop structure in 
order to index correctly a single TRIGS array. 

As in previous cases there is an analogous form of decimation in time, obtained 
either directly by transposition or by manipulation of the Cooley-Tukey version 
along the same lines as above. The outcome is a factorization of the form given by 
Eq. (19) but with 

This form was recommended by Singleton [ 2 I] for transforming sequences of data 
too large to be contained in core. The appropriate Fortran routine is now that for 
self-sorting decimation in time with LA = 1, and with modifications similar to those 
given for the previous algorithm. Note that Pease’s algorithm and its transpose, like 
the self-sorting variants, require a work array. 

We now have six different “canonical” forms of the FFT algorithm, with the 
structure of the factorization defined in each case. For multiple factors there is now 
almost no limit to the number of different algorithms which could be invented. For 
example, if N = pqrs we could use any of the six forms to decompose the transforms 
into factors containing Wp, and W,,, and then use any of the six forms to decompose 
each of these factors further. 

(f) Remarks 

(1) It could be argued that there are really only two canonical forms, 
decimation in frequency and decimation in time; within each of these categories, the 
intermediate results for any of the three forms are the same apart from a permutation. 
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(2) All forms require exactly the same amount of floating-point arithmetic. 

(3) In the original paper by Cooley and Tukey [6] and many subsequent 
descriptions, the vector A(Z) in the skeleton Fortran routine for decimation in 
frequency is multiplied by the product matrix L)(K) * W(IFAC), i.e., we could 
compute 

(a(K) * W(IFAC)) * A(I) 

rather than 

O(K) * (W(IFAC) * A(Z)), 

and similarly in the routine for decimation in time. 
Assuming that the elements of the product matrix are already available (they could 

be picked out of the TRIGS array), it appears at first sight that this would decrease 
the operation count. We shall see in the next section why this is not in fact the case. 
The elements of R(K) are variously referred to as phase factors, rotation factors (20 1 
or twiddle factors [ 9 1. 

(4) Although neglected for a long time, the self-sorting variants were 
discovered soon after the Cooley-Tukey version; Cochran et al. [ 5 ] attribute the idea 
to Stockham. In a sense it is obvious that such variants should exist; the problem is 
to find simple algorithms for them. Gentleman and Sande [9] refer to the idea as 
“FFT’s using scratch storage.” Uhrich [27] presented a compact self-sorting radix-2 
program, but with no explanation of how it worked. Glassman [ 101 and Drubin [8 ] 
also developed a self-sorting algorithm via matrix factorization. For a recent 
derivation using a somewhat different approach. see De Boor [ 7 1. 

(5) The self-sorting variants have recently attracted more attention in the 
context of implementation on vector computers, since the explicit permutation 
required by the other variants is essentially a scalar operation and thus relatively 
time-consuming. 

(6) There is one situation in which the extra storage requirements of the self- 
sorting forms and the permutation step of other variants can both be avoided. 
Suppose, for example, that the computation consists of a transform from physical 
space to Fourier space, an operation on the Fourier coefftcients, and a transform 
back to physical space. For the first transform we can use decimation in frequency, 
but omitting the permutation. The operation on the Fourier coefftcients can then be 
carried out, using the coefficients in scrambled order. For the final transform we use 
decimation in time, omitting the permutation step and using the factors of N in 
reverse order. This procedure depends on the fact that the permutation sequences of 
Eqs. (15) and (19) are then inverses of each other. The penalty now of course is the 
need to operate on the scrambled Fourier coefficients; whether this is acceptable will 
depend on the application. There is also a need for routines to implement decimation 
in both frequency and time. 
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(7) Everything in this paper carries through with minor modifications for the 
inverse transform, 

N-l 

or 

Nz, = x xj exp(-2ijkrr/N) 
j=O 

Nz = W,$x. 

Some writers define the forward and inverse transforms the other way round. 

3. OPERATION COUNTS 

Two aspects of the mixed-radix FFT algorithm for composite N contribute to its 
speed. The first was demonstrated in the previous section; the transform can be 
factorized into a sequence of operations based on transforms of length n,, where ni 
are the factors of N. The second, less often mentioned, is the speed with which these 
short transforms can themselves be computed. For small n, x = W,z can be obtained 
using many fewer operations than appears necessary at first sight. (This is of course 
the reason for separating out the multiplications by phase factors in the algorithms of 
Section 2.) 

In this section we give the algorithms for computing x = W,,z for 2 < n < 6. as 
used in the Cray-1 and Cyber 205 FFT packages mentioned in the Introduction. Note 
that for n = 3, 5, 6 they are different from the algorithms given by Winograd [29]. 
They are slightly more robust with respect to rounding errors, and the algorithm 
given here for n = 5 requires fewer additions (but more multiplications) than 
Winograd’s. The algorithms are all expressed in terms of complex numbers, but it will 
be seen that all multiplications are by real numbers or by i. 

For n = 2 we have simply 

xo=Lo+Z,; x,=zo-z, 

requiring 4 real additions. 
For n = 3 we form three intermediate results, 

t,=z, +z,; I t, = zo - $, ; t, = sin 60 * (z, - zZ); 

x, = z,-J + t, ; x, = t, + it, ; x2 = t2 - it,, 

requiring 12 real additions, 4 real multiplications, 
For n = 4, 

t, = Lo + z2 ; t,=z, +z,; 

x0 = t, + t,; x, = t3 + it,; 

requiring 16 real additions. 

t, = z. - z2; t,=z, -z3; 

x2 = t, - t2 ; x3 = t, - it,, 

Singleton [ 201 gives an algorithm for arbitrary odd n which requires (n - 1 )(n + 3) 

581/52/l-2 
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real additions and (n - 1)’ real multiplications. For n = 5 this would give 32 real 
additions and 16 real multiplications. However, in the same paper a modification due 
to Rader is given for n = 5 which saves 4 multiplications. (Winograd’s algorithm 
saves a further two multiplications at the expense of 2 extra additions.) 

r,=z, +z,; I, = 22 + z3 : t,=z,-zr,; t,=z,-z,; t,=t,+t,; 

t, = (\/5/4)(t, - t,); t,=z,--tt,; t, = t, + t,; tg = t, - t, ; 

t,, = sin 72 * t, + sin 36 * t,; I,, = sin 36 * t, - sin 72 * t, ; 

x0 = zo + t, ; x, = t* + it,,; x* = t, + it,, ; x3 = t, - it,, ; XJ = I, - it,,, 

requiring 32 real additions and 12 real multiplications. A useful variation, which 
reduces all operations to triadic form, is 

t, = sin 72 * (z, - zl); t, = sin 72 * (z2 - z3); 

tlo = t, + (sin 36/sin 72) * t,; t,, = (sin 36/sin 72) * t, - t, 

with no change in the operation count. 
The inclusion of n = 6 in an FFT package is unconventional, but as will be shown 

later it leads to a significant decrease in the overall operation count. The algorithm is 
the smallest example of Good’s theorem [ 121 that, by suitable permutations of the 
input and output data, the phase factors in the factorization of W,, can be eliminated 
if p and q are mutually prime (here p = 2, q = 3). 

We can rewrite x = W,z as 

X0 

X4 

x2 

--- = 

x3 

XI 

- X?- 

31 w3 

s i 
zo 

W 22 Z4 
F 

---i---- w, I-w, z3 L5 ZI 
Thus we can use the algorithm for n = 3 on the vectors (zo,zZ, zJ) and (z3, z5, z,), 
and then take sums and differences; or we can take the sums and differences first, and 
then apply the algorithm for n = 3 to the results. In either case, the operation count is 
36 real additions and 8 real multiplications. Including the n = 6 algorithm within a 
conventional FFT enables some advantage to be taken of mutually prime factors, 
without going to the complexity of Good’s algorithm. 

Table I summarizes the operation counts for these fast “small transform” 
algorithms, and compares them with the corresponding basic algorithms using direct 
matrix multiplication (but avoiding redundant multiplications by f 1 and ki). 

To emphasize the point about separating out the multiplication by phase factors, 
consider the computation x = R W,z where R is a diagonal matrix of complex 
numbers, the first of which is 1. Applying the algorithm above for n = 6 and then 
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TABLE I 

Operation Counts for Transforms of Length n 

BASIC FAST 

n Adds Mults Adds Mults 

2 4 0 4 0 
3 20 16 I2 4 
4 24 0 16 0 
5 12 64 32 12 
6 92 64 36 8 

multiplying the result by R takes a total of 46 real additions and 28 real 
multiplications. Direct multiplication of z by the product matrix R W,, on the other 
hand, would require 120 real additions and 120 real multiplications. 

We are now ready to establish the operation count for the whole FFT algorithm. 
First, it is useful to note the operation count per real point for the computation 
x=RW,z. This is found by adding the operations for (n - 1) complex 
multiplications to the “fast” entries of Table I, and dividing by 2n. The results are 
summarized in Table II. 

So, for example, if n = 2 is a factor of N used in the complex transform algorithm. 
then the pass corresponding to that factor will contribute 3N real additions and 2N 
real multiplications to the operation count. There is one saving which we have not yet 
taken into account; in the skeleton Fortran routine of Section 2, R(K) is the identity 
matrix for K = 0, and the corresponding (n - 1) complex multiplications can be 
omitted. The number of times this happens at each stage is given by the variable LA. 
If N=n,n,n,...n,, then at successive stages LA = 1, n,, n,n,,... and the total 
number of complex multiplications saved is 

(n, - 1) + nl(nz - 1) + n,n,(n, - 1) + .a. + n,nz f.. nk-,(nk- l), 

which is just (N - 1). (Singleton [20] gives a similar demonstration.) 
Suppose we have factorized N in the form N = 2p394’5”6’. Using the results of 

TABLE II 

Operations per Real Point for x = SW,z 

n Adds Mults 

2 1.5 1 

3 2.61 2 
4 2.15 1.5 

5 4 2.8 
6 3.83 2.33 
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TABLE 111 

REAL OPERATION COUNTS FOR COMPLEX FFT’s OF 
LENGTH N 

N 

n = 2. 3. 5 II = 2. 3. 4. 5. 6 

Adds Mults Adds Mults 

180~2’. 3?. 5 4082 2452 3842 1972 
192 = 2”. 3 4098 2308 3778 1668 
200= 2’ 5? 4602 2644 4502 2444 
216~2’. 3’ 4970 3028 4538 2164 
240=2”.3.5 5602 3268 5322 2708 
256 = 2” 5634 3076 5122 2052 

Table II, and including the above saving, the total operation count for the complex 
FFT algorithm is: 
number of real additions: 

2N( 1.5~ + 2.67q + 2.75r + 4s + 3.83t - 1) + 2; 

number of real multiplications: 

2N(p + 2q + 1.5r + 2.8s + 2.33t - 2) + 4. 

Notice, incidentally, that the operation count is independent of the order in which the 
factors are used. 

Table III lists the number of operations required for a range of values of N. both 
for a basic FFT algorithm allowing only the prime factors 2, 3 and 5, and for a “de 
luxe” version including the factors 4 and 6. (In ambiguous cases, factors of 6 are 
extracted first.) Several observations are in order here. A direct calculation of the 
DFT would require almost 4N2 real additions and 4N2 multiplications; the counts in 
Table III are smaller by almost two orders of magnitude. Inclusion of the factors 4 
and 6 gives a significant improvement. Finally, there is nothing very special (except 
program simplicity) about the case N = 2p. 

4. NOTES ON IMPLEMENTATION 

Thus far we have considered the efficiency of the FFT algorithm only in terms of 
the number of arithmetic operations required. Just as important is the efficiency in 
terms of the utilization of the available computer hardware, and for current large- 
scale scientific applications this raises the question of vectorization. 

The problem of vectorizing the FFT algorithm on the Cray-1 and Cyber 205 has 
been discussed in detail elsewhere [24,25], and here only a summary will be given. 



SELF-SORTING MIXED-RADIX FFT 19 

Basically we are concerned with the inner loop of the subroutine PASS outlined in 
Section 2. This loop vectorizes naturally with an increment of 1 between successive 
elements of vectors (assuming here that the real and imaginary parts of complex 
numbers have been stored in separate arrays). Note that the vectors we are discussing 
now should not be confused with the mathematical vectors A(Z) and C(J), which 
were used only for compactness of notation; for clarification, consider the example of 
IFAC = 2 given in Section 2. The vector length is LA, which unfortunately never 
becomes very long for the modest values of N encountered in most applications. For 
example, if N = 180 = 5 x 6 x 6 the vector length on successive passes is 1, 5, 30, 
using decimation in frequency. 

On the Cray-1 (unlike the Cyber 205), the elements of a vector do not have to be 
contiguously stored, but can be spaced at any constant increment. This allows us to 
turn the nested loop structure of subroutine PASS “inside out,” giving instead a 
vector length of N/(IFAC * LA). The case N = 180 = 5 x 6 x 6 can then be 
implemented with vector lengths 36, 6, 30 on successive passes, by choosing the most 
appropriate structure at each stage. Even on the Cray-1, which reaches half 
maximum speed with vector lengths as short as 10 or thereabouts, this is still some 
way from being optimal. Also the inside-out loop structure does have certain 
technical drawbacks as it involves additional memory references, redundant 
multiplications and a risk of bank conflicts [24]. 

As hinted in Section 2, the FFT variant due to Pease [ 181 appears to be more 
suitable for vectorization, since it can be implemented with a vector length of 
N/IFAC throughout. But as shown in [24] this is true only if the permutation step 
can be dispensed with; otherwise the advantage gained from the longer vectors is 
outweighed by the time required for reordering. 

The solution adopted on the Cray-1 arises from the fact that we usually need to 
perform many transforms simultaneously. It is then easy to arrange the data so that 
the transforms are performed in parallel, with each vector containing one element 
from each transform, and the vector length equal to the number of transforms being 
performed. The details of the indexing are transferred to outer loops, and become 
irrelevant from the standpoint of vectorization. As the optimum vector length is 64, 
and we can usually arrange for the number of simultaneous transforms to be of that 
order or even greater, the problem was considered solved for that machine. 

Table IV lists the times per transform for complex FFT’s on the Cray-1 for various 
values of N, comparing the speed of single transforms (vectorized as efficiently as 
possible) with multiple transforms (64 in parallel). All routines were written in 
Fortran. As expected, the advantage gained by performing many transforms in 
parallel decreases as N increases, but even at N = 1024 it is still 
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TABLE IV 

Times per Transform (msec) for Complex FFT’s 

N 

Cray- I Cyber 175 

Single Multiple Single Multiple 

32 0.074 0.012 0.750 0.280 
36 0.086 0.016 0.780 0.330 
96 0.150 0.052 1.940 I.110 

100 0.160 0.064 2.090 1.550 
1024 I.110 0.760 21.140 19.000 

On the Cyber 205, which requires vector lengths of order 100 to reach half 
maximum speed, there is no way in which a single transform of modest length could 
be vectorized very efficiently. Unfortunately, even the multiple vectorization scheme 
adopted on the Cray-1 proves to be inadequate on the Cyber 205. First, the 
requirement that vector elements be contiguous reduces our freedom to specify the 
layout of the data; the multiple approach only works if the simultaneous transforms 
are interleaved (i.e., the data vectors to be transformed are given as rows of a 
columnwise matrix). More seriously, the efftciency continues to improve as vector 
lengths increase (up to a maximum of 64K- l), and vector lengths should preferably 
be at least of order several hundred, typically rather more than the number of 
transforms which can conveniently be performed in parallel. Fortunately, interleaving 
the simultaneous transforms provides a solution. Recall from Section 2(d) that, for 
the self-sorting decimation-in-frequency algorithm for a single transform of length 
N = pqr, the second stage is equivalent to the first stage of p interleaved transforms 
each of length qr, and the third stage is equivalent to thefirsl (and only) stage of pq 
interleaved transforms each of length I-. Suppose now that we have M interleaved 
transforms each of length N =pqr. Applying the simple multiple vectorization 
technique gives a vector length of M throughout. However, from the remarks above 
we see that after the first pass the remainder of the process is equivalent to Mp 
interleaved transforms of length qr, and so the second pass can be done with a vector 
length Mp. The third pass is then equivalent to Mpq interleaved transforms of length 
r, and can be done with a vector length Mpq. Thus interleaving the transforms, which 
had to be done in order to implement the multiple approach at all, in fact results in 
significantly longer vectors after the first pass. This procedure could of course also be 
applied on the Cray-1, but there would be little gain unless the number of transforms 
was much less than 64. 

An analogous result for the decimation-in-time algorithm was used by Korn and 
Lambiotte [ 161. 

Finally, a note on assembly language programs. Implementing a multiple self- 
sorting mixed-radix FFT package in assembly language is a task not to be under- 
taken lightly, as the author will wearily testify; however, depending on the computer, 
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the compiler and the application, it may be worthwhile. On the Cray-1, for example, 
a package written in CAL performs FFT’s at around 100 megaflops, approximately 
twice the rate obtained in Fortran. The provision of vector registers, and the register- 
to-register arithmetic, offer ample scope for the CAL programmer to overlap 
arithmetic with memory references and to organize the scheduling of instructions at a 
level beyond the capabilities of the Fortran compiler. On the Cyber 205, on the other 
hand, the memory-to-memory arithmetic makes such considerations irrelevant, and 
very little is gained by the use of assembly language (though efficient vectorization 
requires the use of non-portable Fortran). 

5. TWO-DIMENSIONAL TRANSFORMS 

In some circumstances we need to perform a two-dimensional complex discrete 
Fourier transform, defined by 

N-l M-1 
xj.k= I -K- vz 

n=O zo 
m,n exp(2ijmrrlM) exp(2ikmr/N). 

In the conventional approach, we first compute N independent DFT’s given by 

M- I 

and then compute M independent DFT’s given by 
N-I 

.Yj,k = \‘ yj,, exp(2iknn/N). 
il=O 

In other words, we first compute DFT’s along rows of the grid, and then compute 
DFT’s along columns of the grid (or, of course, vice versa). 

It does not seem to be generally known that there is a faster way of implementing 
Eq. (22). Henrici [ 131 mentions an alternative approach, but states that it is only 
faster for the case N = 2p. However, this is because he uses a version of the FFT in 
which the rotation factors are not separated out. We will show here that the alter- 
native approach can be faster for any composite N. The two-dimensional FFT 
.algorithm is most easily derived using matrix algebra. Equation(22) may be written 
in the form 

x=(W,,x W,,,)z. 

For simplicity we will consider the case M = N =pq and choose the self-sorting 
variant of the one-dimensional algorithm, though any other variant would do equally 
well. From Eq. (7) we have 
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Using the rules of matrix algebra for Kronecker products, we can rewrite this as 

(W,, x W,,) = (W, x I, x w, x I,)(fy x qp; x 0;) . 

( w, x 1, x w, x I,). (23) 

Equation (23) is a direct two-dimensional analogue of Eq. (7). Reading the factors 
from right to left, we have first a set of 4’ (p x p) two-dimensional transforms, then a 
diagonal matrix of rotation factors, then a permutation matrix, and finally a set ofp’ 
(q x q) two-dimensional transforms. The important point is that the rotation factors 
have been multiplied together, and there are now only N2 of them; in the conven- 
tional approach the N transforms along rows contribute N2 rotation factors, and the 
N transforms along columns contribute a further N’, so there are twice as many 
altogether. If redundant multiplications by 1 are avoided in each case, then the ratio 
becomes slightly less favourable, but Eq. (23) still represents a significant 
improvement. The extension to more factors is straightforward, as is the extension to 
the case M # N. By way of illustration, for M = N = 64 = 43 the three-factor 
analogue of Eq. (23) includes 7047 non-redundant multiplications by rotation factors, 
while the conventional approach requires 10368. 

The operation count for the rest of the algorithm, excluding the multiplications by 
rotation factors, is in general the same whichever approach is used. However. for 
certain factors (e.g., 3 x 3 and 5 x 5) the small two-dimensional transforms can 
themselves be implemented using fewer operations than the conventional approach, 
thus affording further savings; the tricks required here are analogous to those used by 
Winograd [ 29 ] for one-dimensional transforms. 

Also straightforward is the extension to three or more dimensions; the higher the 
dimensionality of the transform. the greater the savings which can be made. 

6. CONCLUDING REMARKS 

The aim of this paper has been to present some of the ideas which have contributed 
towards the development of FFT packages used in numerical weather prediction 
models at ECMWF and the UK Meteorological Office. In particular the matrix 
algebra approach of Section 2 may help to spread understanding of how the many 
variants of the FFT algorithm can be derived. The skeleton Fortran routines, together 
with the small transform algorithms of Section 3, should provide a basis from which 
interested readers can construct FFT programs to suit their own requirements. An 
effort has been made to dispel some lingering myths about the FFT. to point out the 
advantages of the self-sorting variants and of vector techniques, and briefly to 
indicate how savings can be made in multi-dimensional transforms. Finally, it is 
hoped that something of the intriguing character of the algorithm has been conveyed. 
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